

Journal of Liposome Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ilpr20

Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: A systematic review

Hanieh Abbasi, Nadereh Rahbar, Maryam Kouchak, Parna Khalil Dezfuli & Somayeh Handali

To cite this article: Hanieh Abbasi, Nadereh Rahbar, Maryam Kouchak, Parna Khalil Dezfuli & Somayeh Handali (2021): Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: A systematic review, Journal of Liposome Research, DOI: 10.1080/08982104.2021.1903035

To link to this article: https://doi.org/10.1080/08982104.2021.1903035

Accepted author version posted online: 17 Mar 2021.

C	Ø

Submit your article to this journal \square

Article views: 47

View related articles 🗹

🕨 View Crossmark data 🗹

Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: A systematic review

Hanieh Abbasi ^{a,b}, Nadereh Rahbar ^{a,c,*}, Maryam Kouchak ^{a,d}, Parna Khalil Dezfuli ^e, Somayeh Handali ^{f,**}

^a Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

^b Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

^c Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz

^d Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

^e School of Pharmacy Library, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

^f Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran

* Corresponding author: Nadereh Rahbar, Department of Medicinal Chemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Tel: +98 61 33738378

Fax: +98 61 33738381

E-mail addresses: n_rahbar2010@ajums.ac.ir & n_rahbar2001@yahoo.com

** Corresponding author: Somayeh Handali, Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran

Email address: handali_s81@yahoo.com

Tel: +98 21 64121510

Abstract

Cancer is a broad term used to describe a group of diseases that have more than 270 types. Today, due to the suffering of patients from the side effects of existing methods in the treatment of cancer such as chemotherapy and radiotherapy, the employment of targeted methods in the treatment of this disease has been received much consideration. In recent years, nanoparticles have revolutionized in the treatment of many diseases such as cancer. Among these nanoparticles, liposomes are more considerable. Active targeted liposomes show an important role in the selective action of the drug on cancer cells. Until now, a variety of anti-cancer agents have been reported for targeted delivery to cancer cells using liposomes. The results of *in vitro* and studies *in vivo* have been shown that selective action of the targeted liposomes is increased with reduced side effects and toxicity compared with free drugs or non-targeted liposomes. This systematic review expresses the reports of this type of drug delivery system. Search terms were searched through several online databases including PubMed, Scopus, and Science Direct from 1990 to 2019 and the quality evaluation was performed. Out of 11,676 published articles, 196 articles met the inclusion criteria. The current report reviews developments in the liposomes targeted with aptamer, transferrin, folate, and monoclonal antibodies.

Keywords: Liposome, Active targeting, Cancer therapy, Aptamer, Transferrin, Folate, Monoclonal antibodies.

XCC

1. Introduction

Duo to the high side effects of the common cancer therapies (chemotherapy, radiation therapy and surgery) such as damage to healthy cells, the targeted therapy with different mechanisms of action are attracted more attention [1]. Today, the use of nanostructures as a system for targeted drug delivery has been widely considered [2]. Nano-systems are able to use the structural features of tumor tissue for passive targeting. A free drug may be released non-specifically, while a nanostructure can be inserted into tumor tissue through enhanced permeability and retention (EPR) effect via leaky blood vessels. Increased permeability of blood vessels in tumors causes the accumulation of nanoparticles and release of drugs in the vicinity of tumor cells [3-6]. However, the reduction of drug toxicity and increase the therapeutic index can be obtained by the sitespecific delivery. In addition to reach tumor microenvironment passively through the EPR effect, the surface engineered nano-systems can target specific cancer cells by binding to the receptors over-expressed in cancer cells including fibroblast growth factor, epidermal growth factor, folate (FA), transferrin (Tr), and nuleolin receptors. Targeting these overexpressed receptors accumulates the anticancer agent in cancer microenvironment and increases the uptake of the agents by cancer cells [7]. Among these nanosystems, liposomes are the most common nanocarriers owing to their inherent advantages such as high biocompatibility, cell-like membrane, low immunogenicity and toxicity, ability to protect drugs from hydrolysis, and prolong their biological half-life. Liposomes are microscopic vesicles containing a phospholipid bilaver that surrounds a fluid space. Due to the amphipathic properties liposomes can encapsulate hydrophilic and hydrophobic drugs [8,9]. Surface modification of liposomes was firstly implemented with monoclonal antibodies with capability of binding to specific tumor antigens. In addition to monoclonal antibodies (mAbs), other molecules such as transferrin, folate, and new agents so called aptamers have been conjugated with liposomes to construct active targeting agents (Fig. 1) [10-12]. The main objective of this systematic review is to present an overview of studies on the use of aptamers as new functionalizing agents for construction of targeted liposomes as well as summarizing the studies on the functionalized liposomes with the conventional ligands.

2. Methods

2.1. Study selection and Data sources

This systematic review was conducted by searching through PubMed, Scopus, and Science Direct databases from 1990 to 2019. The selected search keywords were liposome, targeted therapy, liposome encapsulated, folic acid, monoclonal antibodies, transferrin, and aptamer. The medical subject headings (MeSH) terms including: transferrin AND liposome AND cancer therapy AND folic acid OR folate AND targeted AND monoclonal antibodies AND Functionalized liposomes AND aptamer OR oligonucleotide NOT photodynamic therapy NOT photothermal therapy were used for detection of articles. It is noteworthy that due to the large amount of data in this field, except in case of aptamer functionalized liposomes, the other articles from 2015 to 2019 in the main text and the articles from 1990 to 2014 are provided in the supplementary material. The search in databases was conducted by four independent researchers, and the results were checked by the fifth researcher.

2.2. Study eligibility

Articles with insufficient data for extraction as well as review and duplicate articles were excluded from this analysis. The included articles were those contained liposomes with the intended ligands for the treatment of cancer and published in English language.

2.3. Collection and extraction of data

Firstly, the specified keywords were searched in the desired databases to obtain the articles. After exclusion of duplicate publications, the remaining articles were further studied for defined eligibility criteria according to their titles and abstracts. Then, the full texts of original articles were carefully evaluated for extraction of the specified data. The studies in functionalized liposomes were separately categorized based on type of ligand. In each case, the type and size of liposome, the type of loaded drug and receptor/antigen, the clinical application, and the type of study were determined.

2.4. Screening and selection results

A total of 11,676 potentially relevant articles were identified by searching through the databases. After removing duplicates publications, review articles, and those were not related to the cancer therapy, the titles and abstracts of 295 remaining articles were screened according to eligibility criteria. In this step, 82 records were excluded from the analysis because of including of other ligands, photo-thermal and photodynamic effects or other reasons. In addition, 18 articles were removed duo to combined function of ligand with another agent and the negative results. Finally 195 full text articles were included in qualitative assessment and data extraction. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the search process is illustrated in Fig. 2.

3. Results

3.1. Liposome functionalized with Aptamer

The recent drug discovery approaches try to design the molecules that are able of modulating the activity of biological targets. Today, new methods have been developed for the synthetic drugs production and biological ligands such as SELEX (Systemic Development of Ligands with Rich Enrichment). Aptamers are artificial single-stranded and short-chain oligonucleotides derived from RNA or DNA and they can be produced by the *in vitro* SELEX method (Fig. 3) [13]. These emerging ligands have been known as alternative to antibodies. They can be easily conjugate with the variety of functional groups, biomolecules and dyes without losing their activity (unlike antibodies) [14]. Also, the much more stability of aptamers than antibodies make them suitable for difficult conditions such as high temperatures. Conjugating aptamers with therapeutic agents for targeted drug delivery have received much attention today. Aptamers have been more considered for targeting liposomes due to their low molecular weight, non-immunogenicity, better tumor penetration and targeting, and no change in affinity by chemical modification. Moreover, aptamers have unique 3D structure that is affected by their sequence. Aptamers have been screened for a wide variety of the disease-related biomarkers such as epidermal growth factor receptor (EGFR), prostate-specific membrane antigen (PSMA), human epidermal growth factor receptor 2 (HER2), protein tyrosine kinase (PTK7), and vascular endothelial growth factor

(VEGF). The aptamer attachment to the target is highly selective and with a high binding affinity. In recent years, aptamers have been emerged as a new and advanced generation of promising targeted ligands, especially in the field of drug delivery systems for cancer therapy [15, 16].

Yu et al. developed a method for prepare aptamer-functionalized cationic liposomes. They used the aptamer by sequence 5 -HS-(T) 10 GGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG-3 (AS1411, nucleolin aptamer). The liposomes were loaded with Paclitaxel (PTX) and Polo-like kinase1 targeted siRNA, and functionalized with aptamer. The AS1411 ligand makes the liposome selectively targeted MCF-7 cells *in vitro* and *in vivo*. This formulation enhanced the apoptotic cell death and reduced angiogenesis. They concluded that the using AS1411 aptamer functionalized liposomes can be served as a promising platform for treatment of breast cancer [17].

Aptamer-functionalized liposomes for treatment of cell carcinoma were developed by Cadinoiu et al. The liposomes were prepared by film hydration technique and conjugated with aptamers for enhancing active targeting. AS1411 aptamer conjugation increased liposome size and the negatively charged DNA aptamer enhanced the surface potential of the liposomes. The *in vitro* release of 5-Fluorouracil (5-FU) showed that after 24 h, a small amount of drug was released from targeted liposomes. *In vitro* anti-tumor studies indicated that the aptamer functionalized 5-FU encapsulated liposomes induced a significant cytotoxic effect on cancer cells. Therefore, it was concluded that the formulation could be effective in cancer treating [18].

In 2015, Alshaer et al. developed the liposome functionalized with anti-CD44 aptamer for targeting cancer cells. CD44 receptor protein is overexpressed in many cancer cells. They used aptamer with sequence 5'GGGAUGGAUCCAAGCUUACUGGCAUCUGGAUUUGCGCGUGCCAGAAUAA GAGUAUAACGUGUGAAUGGGAAGC UCGAUAGGAAUUCGG-3'. Zeta potential of both Mal-Lip and Apt1-Lip was -17.5 ± 0.9 mV, n=6 and -31.0 ± 2.3 , n=6. They also evaluated the cellular uptake by Flow-cytometer and confocal imaging using the two CD44⁺ cell lines; human lung cancer cells (A549), human breast cancer cells (MDA-MB-231), the CD44⁻ cell line, and mouse embryonic fibroblast cells (NIH/3T3). The results showed that this formulation was more sensitive to cancer cells [19].

Aptamer-targeted liposomes for the treatment of breast cancer have been prepared by Xing et al. Firstly; liposomes containing doxorubicin (DOX) were prepared and functionalized with AS1411 nucleolin aptamer. Then, the efficacy of the liposomes was evaluated *in vitro* and *in vivo*. The findings exhibited that AS1411 aptamer-conjugated liposomes increased more cellular internalization and DOX cytotoxicity on breast cancer cells than non-targeting liposomes. In conclusion, this formulation could recognize nucleolin overexpressed on breast cancer cells surface and enabled drug delivery with high specificity and selectivity [20].

These results also agree with findings of Li et al. which formulated DOX containing liposome targeted with AS1411 aptamer for breast cancer treatment. According to their results, targeted liposome increased cellular uptake and cytotoxicity of the drug through aptamer-mediated drug delivery which preventing drug efflux and enhancing therapeutic effect [21].

Duan et al. in 2018 described vincristine-loaded and sgc8-modified liposomes for treating acute lymphoblastic leukemia (Fig. 4). Sgc8 aptamer binds specifically to PTK7 which is a transmembrane receptor protein tyrosine kinase and a potential biomarker for T-ALL. The particle size, zeta potential, PDI, encapsulation efficiency, and drug loading of this formulation were 110.37 nm, -14.37 mv, 0.201, 90.63% and 9.38%, respectively. They also evaluated the binding properties of sgc8/VCR-Lipo which are critical for its specificity and efficacy. The IC₅₀ value for sgc8/VCR-Lipo was 8.2-fold cytotoxic than that of VCR-Lipo after 24 h. According to the results, intravenous injection could specifically deliver sgc8/VCR-Lipo into the local tumor which indicated the efficacy of targeted liposome in the treatment of cancer [22]. All the reported research works in aptamer-functionalized liposomes are summarized and given in Table 1.

3.2. Liposomes functionalized with Folic acid (FA)

As mentioned, the higher overexpression of some receptors in cancer cells than in healthy cells can be considered in choosing the suitable ligand to conjugate with the liposome for targeted drug delivery system. The folate receptor (FR) belongs to the family of glycoproteins known as FRa, FRb, and FRg isomers. The FRa isomer has the greatest potential for targeted cancer treatment. In cancers including breast, lung, kidney, ovarian, colorectal, and brain, the folate receptor is highly expressed [53]. However, sarcomas, lymphomas, pancreas, testicles, bladder, prostate, and liver cancers often do not show a high level of folate receptor. FA is widely used

tumor-targeting ligand with the stability over a wide range of temperatures and pH that can bind specifically to the folate receptor [54]. This ligand is a small, hydrophilic, non-toxic, inexpensive, and stable circulating molecule that makes it useful for targeted transfer [55]. FA increases treatment efficacy, decreases drug dosage and reduces toxicity of therapeutic agents to healthy tissues [56-58].

5F-U liposome targeted with folic acid was designed by Handali et al. for drug delivery to the colon cancer. In this work, the cytotoxicity of formulation against HT-29, Caco-2, CT26, HeLa and MCF-7 cell lines was determined by MTT assay. They used the response surface methodology (RSM) method to optimize the formulation condition. The optimal formulation showed 39.71% encapsulation efficiency. The mechanism of cell death was also investigated through the production of reactive oxygen species (ROS), change in mitochondrial membrane potential ($\Delta\Psi$ m), cytochrome c release and activity of caspase 3/7. The results showed selective delivery and higher toxicity of targeted liposomes in comparison to free drug [59].

In 2018 combination of Celastrol and Irinotecan were encapsulated in FA conjugated liposomes by Soe et al. These nanocarriers were prepared by the thin-film hydration technique. The formulation showed higher drug release profiles for both drugs and higher cellular uptake and increased apoptosis in FA receptor-positive breast cancer cells. Besides, *in vivo* studies showed efficient drug delivery of the targeted formulation by specific targeting of cancer cells and minimizing systemic adverse effects (Fig 5) [60].

Min et al. reported the synthesis and evaluation of a drug delivery system to FR overexpressing mouse origin breast cancer cells. In this work, the FA coated liposomes encapsulated with both gold nanorods and DOX were prepared. The results showed that when liposomes were exposed to an 880-nm NIR laser, the release of DOX was increased. NIR laser also increased the toxicity of the formulation to the cancer cells. Therefore, the use of this drug delivery system was suggested as an effective strategy for treating the cancer cells that have a high expression of folate receptors [54].

FA conjugated cationic liposomes loaded with Bis-arylidene Oxindole (NME2) were developed by Elechalawar et al. The mole percentage of targeting ligand (FA) in the formulation was >11%, which is typically well above (3-4 times) the ligand percentage used in conventional practice. The ligand-targeted liposomes triggered up-regulation of caspase-8 in FA receptormoderately expressing melanoma cells. In this formulation, the combination treatment of targeted FA-liposomes and NME2 could induce caspase-8 through activation and consequent cleavage of receptor interacting protein kinase-1 (RIP-1) [61].

The folate-conjugated pH-sensitive liposomes containing DOX for treatment of breast cancer have been designed by Silva et al. According to the results, targeted formulation exhibited higher cellular uptake and anti-cancer activity than free DOX. Moreover, encapsulation of DOX in liposomes significantly decreased DOX cardiotoxicity and pulmonary metastasis [62]. All the reported researches in FA conjugated liposomes are summarized and given in Tables 2 and S1.

3.3. Liposomes functionalized with Transferrin (TF)

Another ligand used for targeting of liposomes is TF. Transferrin receptor (TFR) is a membrane glycoprotein which mediates iron acquisition by most cells in the organism. Malignant cells such as cancer cells require high levels of iron, so this receptor is much more expressed [78, 79]. This receptor has been regarded as an important tool for targeted transmission (Fig. 6).

Plumbagin liposomes functionalized with TF have been described by Sakpakdeejaroen et al. They showed that the loading of plumbagin in Tf-bearing liposomes significantly enhanced plumbagin uptake by cancer cells, resulting in an improvement of the anti-proliferative (by up to 4.3-fold) and apoptosis efficacies (by up to 5.5-fold) compared with the drug solution. *In vivo*, the intravenous injection of Tf-bearing liposomes entrapping plumbagin led to tumor suppression for 10% of B16-F10 tumors and tumor regression for a further 10% of the tumors [80].

Jhaveri et al. described TF receptor targeted liposomes for Resveratrol (RES). They showed that compared to free RES or RES-L, the TF-RES-Ls were significantly more cytotoxic and induced higher levels of apoptosis through the activation of caspases 3/7 in GBM cells. The therapeutic efficacy of this formulation was studied in a subcutaneous xenograft mouse model of GBM. Tf-RES-Ls showed more tumor growth inhibition than free drug and non-targeted RES liposomes [81].

In 2017 BI et al. developed TF-conjugated liposomes for targeted drug delivery to cancer cells. The mean size, zeta potential, and drug encapsulation efficiency of liposomes were 125.3 nm, +2.9±2.4 mV, and 65.3%, respectively. Free cordycepin suspension released about 85% within 4 h; however, liposome-cordycepin and TF-liposome-cordycepin released about 80% after 24 h. The IC₅₀ value for TF-liposome cordycepin in HepG2 cells was 31 μ M at 24 h. As a result, TF-modified liposomes exhibited an increased cytotoxicity on the cancer cells [82]. All the reported researches in TF-conjugated liposomes are summarized and given in Tables 3 and S2.

3.4. Liposomes functionalized with Monoclonal antibodies (mAbs)

One of the important ways to treat cancer is to use formulations that deal directly or indirectly with the immune system. Today, antibody-antigen reactions are widely used to diagnose and treat many diseases. mAbs are antibodies produced by B cells. In contrast to polyclonal antibodies, mAbs are mono-specific and homogeneous [93]. Purified antibodies have more tendencies for binding to the antigens and as a result, the reactions are more sensitive. Until now various types of antibody fragments such as anti-CD20 monoclonal antibody, anti-CD47 monoclonal antibody, EGFR antibody, and anti-Fas monoclonal antibody have been used as targeting agents [94]. mAbs can strengthen the immune system's attack to cancer cells by binding to cancer cell surface antigens. The conjugation of antibodies to liposomes leads to improve the cancer cellular uptake and enhances the cytotoxic activity of the drugs [95, 96]. All the reported researches in mAbs conjugated liposomes are summarized and given in Tables 4 and S3.

Arabi et al. developed anti-CD44 liposomes of DOX. The liposome size was 90.1 ± 2.1 nm with PDI of 0.14 ± 0.01 and zeta potential of -18 ± 0.01 before coupling to antibody, which partly increased to 107 ± 3.1 nm with PDI of 0.26 ± 0.02 and zeta potential of -15.6 ± 0.03 after the conjugation. In this study, the results of flow cytometry analyses and confocal laser scanning microscopy indicated the enhanced cellular uptake of this formulation in CD44-positive C-26 cells compared to free drug. Moreover, CD44-DOX-L at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition. The authors suggested that CD44-DOX-L formulation can be exploited in targeted therapy for a variety of tumors [97].

In 2018, Anti-GD2 liposomes loaded with Sepantronium bromide (YM155) were prepared by drug/lipid film hydration and extrusion method. Immuno-liposomes had zeta potential of -10 mV, with an antibody coupling efficiency of 60% and YM155 encapsulation efficiency of14%. An *in-vitro* toxicity study showed the less toxicity for immune-liposomes as compared to free

drug. However, *in vivo* pharmacokinetic evaluation showed the prolonged blood circulation and increased half-lives of the targeted liposomes [98].

The anti-CD44 immuno-liposomes encapsulating glycosylated PTX were developed in 2019 by Khayrani et al. They found that the overexpression of CD44 was only in SK-OV-3 cell lines and therefore, they considered it as representative of CD44-positive cells. The IC₅₀ values of the cell lines were in the range of 15–20 nM, which means that the cells are sensitive adequate to give the feasibility of using the targeted formulation for ovarian cancer treatment. They also evaluated the anti-tumor effects of the prepared formulation *in vivo* with repeated administration at a total dose of 300 mg/kg of PTX. It was found that targeted liposomes exhibited higher cytotoxicity in SK-OV-3 cells than glycosylated paclitaxel liposomes and glycosylated paclitaxel. Moreover, targeted liposomes showed most effective anti-tumor activity without adverse effects. It was concluded that this formulation has a potential for targeted drug delivery to the cell surface molecules specifically to ovarian cancer cells [99].

It was found that targeted liposomes exhibited higher cytotoxicity in SK-OV-3 cells than glycosylated paclitaxel liposomes and glycosylated paclitaxel. Moreover, targeted liposomes showed most effective anti-tumor activity without adverse effects.

In another study, Lin et al. prepared four anti-HER2 monoclonalantibody and purified them *via* active and refolding method. Cationic immuno-liposomes of Curcumin/DOX/Herceptin were functionalized with an anti-HER2 monoclonalantibody and targeted against HER2-overexpressing cells. The binding efficiency of these nanoparticles to MDA-MB-231, MCF-7, SKBR3 and Hs578 cell lines was examined. The results indicated receptor-specific binding of targeted liposomes to SKBR3 and cell lines. In this research, oligoclonal nanoparticles exhibited more cytotoxicity effect in comparison to non-targeted liposomes against HER2-positive tumor cells (Fig. 7) [100].

4. Future prospective of active targeted liposomes

So far, only a few targeted liposomal formulations have been entered to clinical trials, though many of them have shown more efficiency in animal and in vitro studies [101]. Many problems have to be solved in order to achieve their successful clinical use. In addition, a number of factors influences on the function of targeted liposomes, including : (i) liposome size for cellular uptake of various cancer cells; (ii) charge of liposomes; (iii) ligand amount on the surface of liposomes; (iv) penetration through body tissues from biological barriers to reach the tumor site; (v) elimination of surface modified liposomes by the body immune system; and (vi) binding between the ligands and the serum proteins in the blood circulation [101, 102]. Formation of protein corona atmosphere around the targeted liposome when they are introduced in bloodstream prevents the proper function of the liposomes [103, 104]. On the other hand, when the functionalized liposomes are exposed to the tumor micro environment, they may bind to tumor surface receptors and cannot be able to penetrate into the tumor [105]. Further, the Reticuloendothelial System (RES) uptake of targeted liposomes can be affected by the existence of target on their surface. These are some reasons which can be responsible for the clinical failure of the targeted liposomes. In spite of the existence of huge challenges for clinical use and scaling up the laboratory based targeted liposomal formulations, however, several clinical trials on them are currently underway [106]

5. Conclusion

In recent years, nanoparticles have been extensively considered as drug carriers. Nanoparticles improve the pharmacokinetic properties of the drug by improving the drug's performance and reducing its side effects. Moreover, they increase the permeability of drug and make it suitable for the targeted drug delivery system. Surface modification of liposomes as nano-delivery systems can be performed to obtain the nanocarriers with distinctive features such as attachment to the receptors existing on the surface of cancer cells. With the modified liposomes, the ranges of their applications in modern drug delivery systems have greatly expanded. The liposomes surface can be modified with different types of ligands such as aptamer, folate, transferrin and monoclonal antibodies to improve the selectivity of drug uptake by cancerous cells. These

active targeted liposomes have several advantages including enhancement of selectivity of drugs to cancer cells for decreasing side effects to normal cells, increasing drug accumulation on cancer cells, and efficiency in the control of drug release. In this review, active targeted liposomes have been demonstrated in various studies both *in vitro* and *in vivo*. Limitation of these nanocarriers to only certain types of cancer that express specific receptors on the cell surfaces are the disadvantages of active targeting liposomes. Furthermore, there is huge challenge in their clinical translation, and further research is required for developing their application in the treatment of cancer.

Acknowledgment

This work was supported by Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

A certed

Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	292.00	CD133 Apt.	CD133	Propranolol	HemSCs	In vitro and in vivo	Remarkable decrease in hemangioma volume, weight and microvessel density	[23]
Cationic	150.3± 8.8	EpCAM Apt.	EpCAM (+)	miR-139-5p	HCT116, HCT8, SGC7901 and HeLa	In vitro and in vivo	Significant tumor suppressive effect on subcutaneous HCT8 colorectal tumor	[24]
PEGylated	145	Endoglin Apt.	Endoglin	mIP-10 plasmid	B16,mTEC, 293T-mE and 293T	In vitro and in vivo	Enhancement in the recruitment of CTLs and showing anti- tumoral effect	[25]
Cationic	121.2± 2.5	AS1411	Nucleolin	PTX / siRNA	MCF-7	In vitro and in vivo	Increased number of apoptotic cells and reduced angiogenesis	[17]
PEGylated	190 ± 15	AS1411	Nucleolin	5-FU	TE 354.T	In vitro	Increased stability of the liposomes by aptamer moieties and acting act as steric barrier	[18]
PEGylated	175.5 ± 9.0	EGFR Apt.	EGFR	siRNA/QDs	MDA-MB- 231 and MDA-MB- 453	In vitro and in vivo	competitive <i>in vivo</i> delivery and therapeutic efficacy	[26]
PEGylated	128.6	AS1411	Nucleolin	DOX	MCF-7/Adr	In Vitro	Efficient accumulation in the nuclei	[21]
PEGylated	110.37	sgc8 Apt.	PTK7	Vincristine	CCRF-CEM	In vitro and in vivo	Significant inhibition of proliferation of cancer cells in vitro and tumor growth in vivo	[22]
PEGylated	161.2 ± 11.3	EGFR Apt.	EGFR	SATB1 RNA	(BeWo, JEG-3 and JAR	In vitro and in vivo	Striking tumor weight inhibitory rate and increased drug delivery	[27]
Cationic	119.5 ± 12.7	CD133 Apt.	CD133	PTX / siRNA	U251	In vitro and in vivo	Persistent target ability to bind glioma cells and brain microvascular endothelial cells	[28
PEGylated	~ 137	CD-44 Apt.	CD-44	siRNA	MDA-MB- 231-Luc2- GFP	In vitro and in vivo	Efficient gene silencing in CD44- expressing tumor cells	[29
PEGylated	170±2 5	HER3 Apt.	HER3	DOX	293T, 293E, MCF-7 and BT474	In vitro and in vivo	Greater tumor suppression and alleviated side effects like weight loss, low survival rate, and organ injury	[30
PEGylated		The second secon	PMN-	D 00-5	4T1, MDA- MB-231, MDA-MB- 468, MCF-7	<i>In vitro</i> and	Cytotoxic and immunomodulatory effects and superior therapeutic efficacy	
PEGylated	~120 178.7 ± 3.1	T1 Apt. AS1411	MDSCs	DOX HMME / Acriflavine	SKOV-3 and HL-7702	in vivo In vitro and	Enhancement of sonodynamic therapy and precise tumor targeting and magnetic resonance	[31

PEGylated	100– 120	CD133 Apt.	CD133	Docetaxel	A549	In vitro and in vivo	Significant antitumor activity with a very low systemic toxicity	[33]
PEGylated	120 ± 1.8	5TR1 Apt.	Mucin1	DOX	C26	In vitro and in vivo	Increased selective delivery of drug to tumor tissue,significant deceleration in tumor growth and enhanced survival	[34]
PEGylated	100- 780	LC09 Apt.	VEGFA	CRISPR/Cas 9	K7M2	In vitro and in vivo	Selective distribution, effective genome editing in tumor, inhibited OS malignancy and lung metastasis, reduced angiogenesis and bone lesion with no detectable toxicity.	[35]
PEGylated	184.8 ± 5.87	EGFR Apt.	EGFR	O2 / Erlotinib	EGFR- negative, A549, H1975 and PC-9	In vitro and in vivo	Desired physicochemistry, good bio-stability and controlled drug release, and facilitated uptake	[36]
Table 1. Co	ntinued						\mathbf{C}	
Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	200- 270	A6 Apt.	HER-2	siRNA	MDA MB- 231, MCF-7, 4T1-R, SKBR-3and 4T1-S	In vitro	Significant increase in cell transfection with No significant cellular toxicity	[37]
PEGylated	179.4 ± 1.16	EGFR Apt.	EGFR	Erlotinib	Helf, PC-9 and H1975	In vitro	Facilitated uptake of liposomes by specific binding and causing apoptosis in cells	[38]
Cationic	~150	A10 Apt.	PSMA	CRISPR/Cas 9	PC, LNCap and PC-3	In vitro and in vivo	Significant cell- type binding specificity	[39]
PEGylated	150 ± 20	IL-4Rα Apt.	IL-4Rα	CpG	CT26	In vitro and in vivo	Enhanced anti-tumor activity	[40]
PEGylated	118± 2.2	TSA14	HER2	DOX	TUBO	In vitro and in vivo	Improved selectivity and therapeutic efficacy of liposomes	[41]
PEGylated	138.7- 146.8	SZTI01	PSMA	TPEN Zinc chelator,	C4–2 and PC3	In vitro and in vivo	Specific delivery to targeted cells and reduced tumor growth of prostate cancer	[42]
DOTAP/DO PE	~100	AS1411	4T1 cell	DOX	4T1, 4TO7 and 67NR	In vitro and in vivo	Enhanced drug accumulation in tumor tissue, sup-ressed tumorgrowth and increased survival rate	[43]
PEGylated	115.1- 122.7	GBI-10	Tenascin- C	Gadolinium	C6 and NIH 3T3	In vitro	Increased cellular binding of liposomes to tumor cells	[44]
PEGylated	140 ± 6	CD44 Apt.	CD44	Rhodamine	A549, NIH 3T3 and MDA-MB- 231	In vitro	Higher sensitivity and selectivity for Apt-Liposome compared to the blank liposomes	[19]
PEGylated	172.2 ± 43.9	AS1411	Nucleolin	DOX	MCF-7 and ADR	In vitro and in vivo	Accumulation of drug in tumor tissues, inhibiting tumor growth and reducing side effects	[45]
Thermo	-	PDGFR	PDGFRs	DOX	MDA-MB-	In vitro	Higher binding an toxicity to	[46]

sensitive		Apt.			231, MCF-7, HepG2 and WiDr		tumor cells compared to blank liposomes	
PEGylated	90– 100	PSMA Apt.	PSMA	DOX	LNCaP and PC3	In vitro and in vivo	Significant enhance in cellular binding and uptake, and selective retention in tumor tissue	[47]
					A375, HEK293, MCF-7,	In vitro	Much higher accumulation and significant silencing activity in tumor cells	
Cationic	~150	AS1411	Nucleolin	Anti-BRAF siRNA	AML12 and C2C12	and <i>in vivo</i>		[48]
PEGylated	-	AraHH001	mTEC	Rhodamine	OS-RC-2 cells)	In vitro and in vivo	Higher accumulation on tumor vasculature compared to blank liposomes	[49]
PEGylated	210 ± 20	AS1411	Nucleolin	DOX	MCF-7	In vitro and in vivo	High specificity and selectivity in drug delivery	[20]
PEGylated	119.3 ± 0.9	ESTA Apt.	ESTA	СуЗ	HUVEC	In vitro and in vivo	Efficient and rapid uptake	[50]
PEGylated	~200	sgc8 Apt.	CEM- CCRF	Fluorescein- dextran	CEM-CCRF	In vitro	High specific targeting with excellent efficiency	[51]
PEGylated	200	AS1411	Nucleolin	Cisplatin	MCF-7 and MDAMB-231	In vitro	Highly specific and significant killing of the target cancer cells	[52]

Lour CCRF In vir MCF-7 and MDAMB-231 In vin

	apy			1			Γ	
Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agen t	Application or Cell line	Study type	Outcome	Ref
PEGylated	184.2± 9.16	FA	FA receptor	Oleuropein	22Rv1	In vitro and in vivo	Increase bioavailability, tumor suppression, weight loss resistance, and survival probability	[63]
PEGylated	~ 140	FA	FA receptor	Arsenic Trioxide	HeLa, KB and HT-3	In vitro	Superior selectivity and efficiency in inducing higher cell apoptosis	[64]
long- circulating and pH- sensitive	123 ± 6	FA	FA receptor	DOX	4T1	In vitro and in vivo	Higher tumor uptake and antitumor activity	[62]
PEGylated	156.7± 0.63	FA	FA receptor	Rapamycin	Human 5637, HT1376 and MBT2	In vitro and in vivo	Enhanced retention and FR- targeting	[65]
PEGylated	154	FA	FA receptor	Gold nanorods and DOX	4T1) and NIH3T3	In vitro and in vivo	Enhanced toxicity and effective growth inhibition towards cancer cells	[54]
PEGylated	105- 120	FA	FA receptor	Mitomycin C / DOX	LNCaP and KB	In vitro	Significant enhance in cytotoxic activity	[66]
Temperature - Sensitive/Ma gnetic	$\begin{array}{c} 140.9 \pm \\ 8.1 \end{array}$	FA	FA receptor	17-AAG	SKOV3 and MCF7	In vitro and in vivo	Inhibition in proliferation of cancer cells witheffective targeting to tumor tissues	[67]
PEGylated	114.0 ± 4.58	FA	FA receptor	5-FU	CT26	In vitro and in vivo	Higher cellular uptake, lower IC50 and higher ROS production compared to free drug	[68]
PEGylated	205 ± 2.2	FA	FA receptor	Nitrooxy/ DOX	MCF10A, MCF7, SKBR3, T74D, MDA- MB-231, U- 2OS and JC	In vitro and in vivo	Maximal anti-tumor efficacy against FAR positive/Pgp positive cells	[69]
PEGylated	~190	FA	FA receptor	Celastrol / Irinotecan	MCF-7, MDA- MB-231 and A549	In vitro and in vivo	High uptake, selective targeting, enhanced apopto -sis in cancer cells and minimized adverse effects	[60]
PEGylated	174	FA	FA receptor	5-FU	HT-29, Caco-2, CT26, HeLa and MCF-7	In vitro and in vivo	Reduced tumor volume in comparison to free 5-FU	[61]
PEGylated	~100	FA	FA receptor	Bleomycin	HeLa and MCF- 7	In vitro	Effective induction in apoptosis and cell-cycle arrest and increased liposomal uptake	[70]
Cationic	200 ± 5	FA	FA receptor	Bis- arylidene Oxindole	A549, B16F10, NIH3T3, SKOV-3 and CT26	In vitro and in vivo	Induced potent caspase-8 up- regulation even in FR-moderately expressing melanoma cells	[61]
PEGylated	222±8	FA	FA receptor	Betulinic acid	HepG2 and A549	In vitro	Selective up takeand enhanced cytotoxicity	[71]

PEGylated		FA			HepG-2 and	In vitro	Higher binding to cancer cells and	
1 2091400	~500		FA receptor	Oridonin	A549	and <i>in vivo</i>	improved antitumor activity	[72]
PEGylated	94.2	FA	FA receptor	Mitomycin C	KB, IGROV-1, T-24, J6456, M109 and C26	In vitro and in vivo	Increased cellular uptake and cytotoxic activity	[73]
cationic	95.3	FA	FA receptor	HIF-1α siRNA	A375	In vitro	Significant enhance in anti- melanoma activity	[74]
PEGylated	150	FA	FA receptor	C6 ceramide / DOX	A2780- ADR,HeLa and H69-AR	In vitro	Significantly higher cell death	[75]
PEGylated	200	FA		metabolite of norcanthari		In vitro and	Increased tumor-targeting, cellular apoptosis in the tumors and antitumor activity	[7.6]
- 5	200				1122			
	200		FA receptor	din	H22	in vivo		[76]

Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	113 ± 2	TF	TF receptor	Plumbagin	A431, T98G and B16-F10	In vitro and in vivo	Increased drug uptake by cancer cells and antiproliferative efficacy and apoptosis activity	[80]
PEGylated	-	TF	TF receptor	Resveratrol	U-87 MG, Astrocytoma, LN-18 and glioblastoma	In vitro	Enhanced uptake by cells and increased activation of caspases 3/7	[83]
PEGylated	211.2 ± 0.8	TF	TF receptor	Resveratrol	U-87	In vitro and in vivo	Enhanced growth inhibition and activation of caspases 3/7	[81]
PEGylated	107	TF	TF receptor	5-FU	HT-29	In vitro	Increased cytotoxic activity and inducing apoptosis via mitochondria signaling pathway	[84]
PEGylated	180	TF	TF receptor	Dopamine	hCMEC/D3	In vitro	The absence of toxicity and decreasing complications to patients	[79]
PEGylated	103.4± 2.8	TF	TF receptor	Dihydroqui nol-in derivatives	Hep G2, 6HEK-293T and HeLa	In vitro	Enhanced ROS level and improved cell uptake	[85]
PEGylated	157	TF	TF receptor	Zoledronica cid	4T1	In vitro	Improved anticancer activity	[86]
PEGylated	109.01 ± 1.33	TF	TF receptor	Vincristine/ tetrandrine	C6	In vitro and in vivo	Prolonged circulation time and accumulate in tumor l site leading to robust anticancer efficacy	[87]
PEGylated	125.3	TF	TF receptor	Cordycepin	PLC/PRF/5 and HepG2	In vitro	Enhanced cellular uptake	[82]
PEGylated	86	TF	WT1	WT1 shRNA	B16F10	In vitro and in vivo	Reduced tumor size and increased survival	[88]
PEGylated	< 200	TF	TF receptor	Docetaxel / quantum dots	Brain cancer	In vitro and in vivo	Improved and prolonged brain targeting of drug	[89]
PEGylated	416± 95	TF	TF receptor	Artemisinin	HCT-8	In vitro	Enhanced delivery of drug	[90]
PEGylated	138.6 ± 6.65	TF	TF receptor	Nitrocampt othecin/cycl odextrin	HepG2, A2780 and L02	In vitro and in vivo	Enhanced cytotoxicity to tumor cells, improved efficiency of targeted drug delivery	[91]
PEGylated	144.5± 1.7	TF	TF receptor	Isoquinoline Derivative	HeLa, HepG2 and HEK-293T	In vitro	Superior antitumor activity compared to non targeted controls and the free drug	[92]

Table 4. Sur targeted car	-		articles in li	iposomes fui	nctionalized wi	ith monoc	lonal antibodies for active	
Liposome type	Size (nm)	Ligand	Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
Immunolipo somes	100	Anti-CD44	CD44	Glycosylate d PTX	SK-OV-3 and OVK18	In vitro and in vivo	Enhancedcytotoxicity, reduced tumor volume and increased the therapeutic efficacy	[99]
cationicImm unoliposome s	250	Anti- HER2/ neu	HER2/ neu	Curcumin/D OX/Hercept in	MDA-MB- 231, MCF-7, SKBR3 and Hs578	In vitro and in vivo	Specific binding and targeting to surface of cells and increased cytotoxic activity	[100]
Immunolipo somes	140	Anti- EGFR	EGFR	DOX	MDA-MB-468	In vitro	Increased cytotoxicity and therapeutic window of drug	[107]
Immunolipo somes	100	MM-302	HER2	DOX	MDA-MB-453 and MDA-MB- 231	In vitro and in vivo	Enhanced drug delivery as a result of targeting	[108]
Immunolipo somes	80- 100	scFvG8 / Hyb3	MAGE-A1/ HLA-A1	DOX	MZ2Mel43, G43, Mel78and Mel2A	In vitro and in vivo	Enhanced tumor cell kill, accumulation of targeted liposomes and cytotoxicity	[109]
Thermal- sensitive multifunctio nal	185.7 ±51.48	Anti- EGFR	EGFR	DOX / Gold nanorods	A431 and A549	In vitro and in vivo	Selective targeting and noo signs of major morphological damages to the normal tissues	[110]
Immunolipo somes	115.5 ± 3.1	Anti- CD123 /anti-CD33	CD123/ CD33	DOX	HL-60 and THP-1	In vitro	Increased cellular uptake and enhanced antitumor effects	[111]
Immunolipo somes	109.5 ± 3.42	Anti- EGFR	EGFR	Afatinib	A549 and H1975	In vitro and in vivo	Enhanced drug delivery, growth inhibition and cellular internalization rate	[112]
Immunolipo somes	110- 190	Anti-PD- L1	PD-L1	Calcein	B16OVA, B16,BSF, LLC and C26	In vitro and in vivo	Increased accumulation and cytotoxicity providing tumor shrinkage	[113]
Immunolipo somes	106.7- 102.4	Anti- HER2	HER2	DOX	BT474, SKBR3 and MCF10A	In vitro	Efficient binding and enhanced cytotoxicity	[107]
Immunolipo somes	102– 106	Anti- HER2	HER2	DOX	MCF10A, SKBR3 and BT474	In vitro	More cytotoxicity effect in comparison to non-targeted liposomes	[114]
Immunolipo somes	120 ± 5	Anti- HER2	HER2	Methotrexat e	BT-474, SKBR-3 and MDA-MB-231	In vitro	High target-binding avidity and efficient cytotoxicity	[116]
Immunolipo somes	140±3. 4	Anti- HER2	HER2	Trastuzuma b/ Docetaxel	MDA-MB-453 and MDA- MB-231	In vitro and in vivo	Efficient drug delivery with higher efficacy and prolonged survival	[117]
Immunolipo somes	127.0 ± 2.0	MEM- 102/MEM- 43/5	CD48 / CD59	Fluor 647	CD48 ⁺ , CD59 ⁺ and BW5147 cells	In vitro and in vivo	Specific recognition of antigen- positive cells and efficient drug delivery	[118]
Immunolipo somes	140– 190	Anti-CD20	CD20	Superparam agnetic iron oxide	Granta and Z138C	In vitro and in vivo	Induced cell internalization and apoptosis effect	[119]

Immunolipo somes	170	Anti-GD2	GD2	Sepantroniu m bromide	IMR32 and KCNR	In vitro and in vivo	Prolonged blood circulation, increased half-lives and tumor accumulation	[98]
Immunolipo somes	< 100	Anti-DR5	DR5	-	Jurkat, COLO205, WiDr, A2058, BxPC-3	In vitro	Enhancing the anti-cancer apoptosis	[120]

Table 4. Co	ntinued							
Liposome type	Size (nm)	Ligand	Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
Immunolipo somes	80-100	Anti- EGFR	EGFR	Porphyrin	CT26-fLuc	In vitro and in vivo	More effective against tumor growth	[121]
Immunolipo somes	138.2 ± 5.9	trastuzuma b	HER2	Rapamycin	MDA-MB- 231and SK- BR-3	In vitro	Enhanced cytotoxicity	[122]
Immunolipo somes	160.1 ± 0.9	Anti- CA IX	CA IX	Triptolide	A549	In vitro and in vivo	Restrainingtumor growth and showing prolonged life-span	[123]
Immunolipo somes	<180	Anti- EGFR	EGFR	5-FU	A431	In vitro	Decreased IC ₅₀	[124]
Immunolipo somes	140.3	Anti- HER2	HER2	PTX/ Rapamycin	4T1 and SKBR3	In vitro and in vivo	Increased cytotoxicity, enhanced uptake and controlled tumor growth	[125]
Immunolipo somes	80- 95	Anti- MAGE A1	MAGE A1		MZ2Mel43, G43, Mel78 and Mel2A	In vitro	Promoting internalization of nanoparticles	[126]
Temperature - sensitive	219 ± 29	Herceptin	HER2	Gemcitabine	K-BR-3	In vitro	Increased cytotoxicity and improved drug delivery	[127]
Immunolipo somes	180	Anti- EGFR	EGFR	-	LS180	In vitro and in vivo	Improved survival and cure rates	[128]
Immunolipo somes	107 ± 3.1	Anti-CD44	CD44	DOX	C-26 and NIH-3T3	In vitro and in vivo	Superior tumor growth inhibition and higher inclination to tumor	[97]
Immunolipo somes	112.1± 0.5	Anti- VEGF165	VEGF165	PTX	SGC-7901	In vivo	Carrying anticancer drugs to the interior of solid tumors and effective inhibition of tumor growth	[129]
Immunolipo somes	>100	Anti-CD20	CD20	Antisense gene	Jurkat T, HL60, HEL, CCL-213, and CCL-86	In vitro and in vivo	Selective and effective reduced the expression of <i>BCL2</i> in target cells	[130]
Immunolipo somes-ICG	189.1 ± 4.8	Anti- MUC- 1	MUC-1	DOX	4T1 and HT- 29	In vitro and in vivo	Rapidaccumulation	[131]

Stealth PLGA	193.5± 12.5	Anti- CAGE scFV	CAGE scFV	Recombinant methioninase	SGC-7901	In vitro and in vivo	Increased cell uptake and more effective in inhibiting tumor growth	[132]
Immunolipo somes	120	Anti- EGFR	EGFR	Celecoxib	HT-29, SW620, MDA-MB- 468 and HCT- 116	In vitro	Enhanced selective uptake and toxicity	[133]

References

- 1. Walter, H.S., and Ahmed, S., 2018. Targeted therapies in cancer. Surgery (Oxford) 36, 122-127.
- 2. Moghimipour, E., et al., 2018. A mechanistic study of the effect of transferrin conjugation on cytotoxicity of targeted liposomes. Journal of microencapsulation, 35, 548-558.
- 3. Alavi, M., and Hamidi, M., 2019. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 34.
- 4. Golombek, S.K., et al., 2018. Tumor targeting via EPR: Strategies to enhance patient responses. Advanced drug delivery reviews,130,17-38.
- 5. Maeda, H., 2012. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release, 164, 138-144.
- 6. Shi, Y., et al., 2020. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 10, 7921.
- 7. Riaz, M.K., et al., 2018. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. International journal of molecular sciences, 19, 195.
- 8. Lila, A.S.A., and Ishida, T., 2017. Liposomal delivery systems: design optimization and current applications. Biological and Pharmaceutical Bulletin, 40, 1-10.
- 9. Anwekar, H., Patel, S., and Singhai A., 2011. Liposome-as drug carriers. International journal of pharmacy & life sciences, 2,
- 10. Lian, T., and Ho, R.J., 2001. Trends and developments in liposome drug delivery systems. Journal of pharmaceutical sciences, 90, 667-680.
- 11. Byrne, J.D., Betancourt, T., and Brannon-Peppas, L., 2008. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews, 60, 1615-1626.
- Danhier, F., Feron, O., and Préat, V., 2010. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of controlled release, 148, 135-146.

- Heydari, M., et al., 2020. Aptamers as potential recognition elements for detection of vitamins and minerals: a systematic and critical review. Critical reviews in clinical laboratory sciences, 57, 126-144.
- Shirani, M., H.K., Khodayar, M.J., and Kouchak, M., 2020. novel strategy for detection of small molecules based on aptamer/gold nanoparticles/graphitic carbon nitride nanosheets as fluorescent biosensor. Talanta, 219, 121235.
- 15. Zhu, G., and Chen, X., 2018. Aptamer-based targeted therapy. Advanced drug delivery reviews ,134, 65-78.
- 16. Röthlisberger, P., and Hollenstein, M., 2018. Aptamer chemistry. Advanced drug delivery reviews, 134, 3-21.
- Yu, S., et al., 2019. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamerfunctionalized cationic liposome for synergistic anti-breast cancer effects in vivo. Journal of biomedical nanotechnology, 15, 1135-1148.
- 18. Cadinoiu, A.N., et al., 2019. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers, 11, 1515.
- 19. Alshaer, W., et al., 2015. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjugate chemistry, 26, 1307-1313.
- 20. Xing, H., et al., 2013. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 1, 5288-5297.
- Li, X., et al., 2019. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomedicine & Pharmacotherapy, 117, 109072.
- 22. Duan, S., et al., 2018. Vincristine-loaded and sgc8-modified liposome as a potential targeted drug delivery system for treating acute lymphoblastic leukemia. Journal of biomedical nanotechnology, 14, 910-921.
- Guo, X., et al., 2019. The sustained and targeted treatment of hemangiomas by propranololloaded CD133 aptamers conjugated liposomes-in-microspheres. Biomedicine & Pharmacotherapy, 114, 108823.
- Zhao, Y., et al., 2019. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Molecular pharmaceutics, 16, 4696-4710.

- Yang, X., et al., 2019. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics, 9, 4066.
- 26. Kim, M.W., et al., 2019. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics, 9, 837.
- Dong, J., et al., 2018. EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomedicine & Pharmacotherapy, 107, 849-859.
- Sun, X., et al., 2018. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug delivery, 25, 1718-1727.
- 29. Alshaer, W., et al., 2018. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model . Journal of Controlled Release, 271, 98-106.
- Dou, X., et al., 2018. Aptamer–drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. International journal of nanomedicine, 13, 763.
- 31. Liu, H., et al., 2018. A novel DNA aptamer for dual targeting of polymorphonuclear myeloidderived suppressor cells and tumor cells. Theranostics, 8, 31.
- 32. Wang, L., et al., 2018. A Core–Shell Nanoplatform for Synergistic Enhanced Sonodynamic Therapy of Hypoxic Tumor via Cascaded Strategy. Advanced Healthcare Materials, 7, 1800819.
- 33. Ma, J., et al., 2018. Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artificial cells, nanomedicine, and biotechnology, 46, 1864-1871.
- 34. Moosavian, S.A., et al., 2018. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artificial cells, nanomedicine, and biotechnology, 46, 2054-2065.
- 35. Liang, C., et al., 2017.Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials, 147 68-85.
- 36. Li, F., et al., 2017. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials, 145, 56-71.
- 37. Powell, D., et al., 2017. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 114, 108-118.
- 38. Li, F., et al., 2017. Aptamer-conjugated chitosan-anchored liposomal complexes for targeted delivery of erlotinib to EGFR-mutated lung cancer cells. The AAPS journal, 19, 814-826.

- 39. Zhen, S., et al., 2017.Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget, 8, 9375.
- 40. Liu, Y.J., et al., 2017. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment. Journal of drug targeting, 25, 275-283.
- Moosavian, S.A., et al., 2016. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids and Surfaces B: Biointerfaces, 139, 228-236.
- 42. Stuart, C.H., et al., 2016. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn +2chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine, 11, 1207-1222.
- 43. Song, X., et al., 2015. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes. Oncology Reports, 34, 1953-1960.
- Gu, M.J., et al., 2015. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. International Journal of Nanomedicine, 10, 5187.
- 45. Liao, Z.X., et al., 2015. An AS1411 aptamer-conjugated liposomal system containing a bubblegenerating agent for tumor-specific chemotherapy that overcomes multidrug resistance. Journal of controlled release, 208, 42-51.
- 46. Ninomiya, K., et al., 2014.Targeted and ultrasound-triggered drug delivery using liposomes comodified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrasonics sonochemistry, 21, 1482-1488.
- 47. Baek, S.E., et al., 2014. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. Journal of Controlled Release, 196, 234-242.
- 48. Li, L., et al., 2014. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials, 35, 3840-3850.
- 49. Ara, N., et al., 2014. An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials, 35, 7110-7120.
- 50. Mann, A.P., et al., 2011. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget, 2, 298.
- 51. Kang, H., et al., 2010. A liposome-based nanostructure for aptamer directed delivery. Chemical communications, 46, 249-251.
- 52. Cao, Z., et al., 2009. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angewandte Chemie International Edition, 48, 6494-6498.

- 53. Fernández, M., Javaid, F., and Chudasama, V., 2018. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chemical science, 9, 790-810.
- 54. Min, H.K., et al., 2019. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids and Surfaces B: Biointerfaces, 17, 539-548.
- 55. Zwicke, G.L., Ali Mansoori, G., and Jeffery, C.J., 2012. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano reviews, 3, 18496.
- 56. Turk, M.J., Waters, D.J., and Low, P.S., 2004. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer letters, 213, 165-172.
- 57. Gao, Y., et al., 2015. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. European Journal of Pharmaceutical Sciences, 70, 55-63.
- 58. Shmeeda, H., et al., 2006. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Molecular Cancer Therapeutics, 5, 818-824.
- 59. Handali, S., et al., 2018. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomedicine & Pharmacotherapy, 108, 1259-1273.
- 60. Soe, Z.C., et al., 2018. combination delivery using liposomes for effective chemotherapy. Colloids and Surfaces B: Biointerfaces, 170, 718-728.
- 61. Elechalawar, C.K., et al., 2017. Cationic folate-mediated liposomal delivery of bis-arylidene oxindole induces efficient melanoma tumor regression. Biomaterials science, 5, 1898-1909.
- 62. de Oliveira Silva, J., et al., 2019. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomedicine & Pharmacotherapy, 118, 109323.
- 63. Nassir, A.M., et al., 2019. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: In vitro and in vivo activity. Life sciences, 220, 136-146.
- 64. Akhtar, A., et al., 2019. Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro. International Journal of Molecular Sciences, 20, 2156.
- 65. Yoon, H.Y., et al., 2019. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. International journal of nanomedicine, 14, 6249.
- 66. Patil, Y., et al., 2018. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine: Nanotechnology, Biology and Medicine, 14, 1407-1416.

- 67. Wang, X., et al., 2018. Preparation of folic acid-targeted temperature-sensitive magnetoliposomes and their antitumor effects in vitro and in vivo. Targeted oncology, 13, 481-494.
- 68. Moghimipour, E., et al., 2018. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. European Journal of Pharmaceutical Sciences, 114, 166-174.
- Gazzano, E., et al., 2018. Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. Journal of controlled release, 270, 37-52.
- 70. Chiani, M., et al., 2018. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artificial cells, nanomedicine, and biotechnology, 46, 757-763.
- 71. Guo, B., et al., 2017. Enzymatic synthesis and in vitro evaluation of folate-functionalized liposomes. Drug Design, Development and Therapy, 11, 1839.
- 72. Wang, C., Li, W., and Hu, B., 2017. The anti-tumor effect of folate-targeted liposome microbubbles loaded with oridonin as ultrasound-triggered tumor-targeted therapeutic carrier system. Journal of drug targeting, 25, 83-91.
- 73. Patil, Y., et al., 2016. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity. Journal of controlled release. 225, 87-95.
- 74. Chen, Z., et al., 2016. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. International journal of nanomedicine, 11, 991.
- 75. Sriraman, S.K., et al., 2016. Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Molecular pharmaceutics, 13, 428-437.
- 76. Liu, M.C., et al., 2016. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo. International journal of nanomedicine, 11, 1395.
- 77. Guo, F., et al., 2015. Smart IR780 theranostic nanocarrier for tumor-specific therapy: hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS applied materials & interfaces, 7, 20556-20567.
- 78. Ponka, P., and Lok, C.N., 1999. The transferrin receptor: role in health and disease. International journal of biochemistry & cell biology, 31, 1111-1137.
- 79. Lopalco, A., et al., 2018. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. . Nanomaterials, 8, 178.

- 80. Sakpakdeejaroen, I., et al., 2019. Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy. Journal of interdisciplinary nanomedicine, 4, 54-7
- 81. Jhaveri, A., et al., 2018. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. Journal of controlled release, 277, 89-101.
- 82. Bi, Y.E., et al., 2017. Targeted delivery of cordycepin to liver cancer cells using transferrinconjugated liposomes. Anticancer research, 37, 5207-5214.
- Jhaveri, A., Luther, E., and Torchilin, V., 2019. The effect of transferrin-targeted, resveratrolloaded liposomes on neurosphere cultures of glioblastoma: implications for targeting tumourinitiating cells. Journal of drug targeting, 27, 601-613.
- 84. Moghimipour, E., et al., 2018.Transferrin targeted liposomal 5-fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life sciences, 194, 104-110
- 85. Wang, M., et al., 2017. Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. Plos one, 12, e0186821.
- 86. Naseri, M., et al., 2017. The efficiency of Zoledronic acid loaded liposomal nanoparticles on breast cancer: an in vitro study. Journal of Current Pharma Research, 7, 2148-2153.
- Song, X.1., et al., 2017. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. European journal of pharmaceutical sciences, 96, 129-140.
- Saavedra-Alonso, S., et al., 2016. WT1 shRNA delivery using transferrin-conjugated PEG liposomes in an in vivo model of melanoma. Experimental and therapeutic medicine, 12, 3778-3784
- 89. Sonali R.P., et al., 2016. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug delivery, 23, 1261-1271.
- 90. Leto, I., et al., 2016. Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. ChemMedChem, 11, 1745-1751.
- 91. Chen, J., et al., 2015. Characterization of 9-nitrocamptothecin-in-cyclodextrin-in-liposomes modified with transferrin for the treating of tumor. International journal of pharmaceutics, 490, 219-228.
- 92. Yang, X., et al., 2015. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. Plos one, 10, e 0136649.
- 93. Breedveld, F., 2000. Therapeutic monoclonal antibodies. The Lancet, 355, 735-740.
- 94. Muhamad, N., Plengsuriyakarn, T., and Na-Bangchang, K., 2018. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. International journal of nanomedicine, 13, 3921.

- 95. Bayer, V., 2019. An Overview of Monoclonal Antibodies. in Seminars in oncology nursing. Elsevier,
- 96. Waldmann, T.A., 1991. Monoclonal antibodies in diagnosis and therapy. Science, 252, 1657-1662.
- 97. Arabi, L., et al., 2015. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. Journal of controlled release, 220, 275-286.
- Gholizadeh, S., et al., 2018. Anti-GD2 immunoliposomes for targeted delivery of the survivin inhibitor sepantronium bromide (YM155) to neuroblastoma tumor cells. Pharmaceutical research, 35, 85.
- 99. Khayrani, A.C., et al., 2019. Targeting Ovarian Cancer Cells Overexpressing CD44 with Immunoliposomes Encapsulating Glycosylated Paclitaxel. International journal of molecular sciences, 20, 1042.
- 100. Lin, Y.L., et al., 2019. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. Journal of nanobiotechnology, 17, 1-11.
- 101. Yan, W., et al., 2020. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine, 15, 303-318.
- 102. Khidir, M.A., et al., 2020. Ligand-targeted liposomes. Health and Primary Care, 4, 1-4.
- 103. Cedervall, T., et al., 2007. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl, 46, 5754-5756.
- 104. Lundqvist, M., et al., 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A, 105, 14265-14270.
- 105. Lammers, T., et al., 2012. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release, 161, 175-187.
- 106. Fathi, S., et al., 2016. Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Medicinal Chemistry, 8, 2091-2112.
- 107. Wöll, S., et al., 2019. Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. European Journal of Pharmaceutics and Biopharmaceutics, 136, 203-212.
- 108. Dumont, N., et al., 2019. Nanoliposome targeting in breast cancer is influenced by the tumor microenvironment. Nanomedicine: Nanotechnology, Biology and Medicine. 17, 71-81.
- 109. Saeed, M., et al., 2019. Liposomes targeted to MHC-restricted antigen improve drug delivery and antimelanoma response. International Journal of Nanomedicine, 14, 2069.

- Liu, K.C., et al., 2019. Development of a novel thermal-sensitive multifunctional liposome with antibody conjugation to target EGFR-expressing tumors. Nanomedicine: Nanotechnology, Biology and Medicine, 15, 285-294.
- 111. Sun, S., et al., 2019. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape. International journal of pharmaceutics, 568, 118518.
- 112. Lu, X., et al., 2019. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel strategy targeting the epidermal growth factor receptor for treatment of non-small-cell lung cancer. International journal of pharmaceutics, 560, 126-135.
- 113. Merino, M., et al., 2019. A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomedicine: Nanotechnology, Biology and Medicine, 17, 13-25.
- 114. Farasat, A., et al., 2019. Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin. Journal of liposome research, 29, 53-65.
- 115. Petrilli, R., et al., 2018. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. Journal of controlled release, 283, 151-162.
- 116. Nikkhoi, S.K., et al., 2018. Multivalent targeting and killing of HER2 overexpressing breast carcinoma cells with methotrexate-encapsulated tetra-specific non-overlapping variable domain heavy chain anti-HER2 antibody-PEG-liposomes: in vitro proof-of-concept. European journal of pharmaceutical sciences, 122, 2-50.
- 117. Rodallec, A., et al., 2018. From 3D spheroids to tumor bearing mice: efficacy and distribution studies of trastuzumab-docetaxel immunoliposome in breast cancer. International journal of nanomedicine, 13, 6677.
- Ohradanova-Repic, A., et al., 2018. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine: Nanotechnology, Biology and Medicine, 14, 123-130.
- Saesoo, S., et al., 2018. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids and Surfaces B: Biointerfaces, 161, 497-507.
- 120. Niwa, T., et al., 2018. Novel immunoliposome technology for enhancing the activity of the agonistic antibody against the tumor necrosis factor receptor superfamily. Molecular pharmaceutics, 15, 3729-3740.

- Li, Y., et al., 2018. EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer. Nanoscale, 10, 16738-16749.
- 122. Eloy, J.O., et al., 2017. Rapamycin-loaded immunoliposomes functionalized with trastuzumab: a strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anti-Cancer Agents in Med. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents, 17, 48-56.
- 123. Lin, C., et al., 2017.Pulmonary delivery of triptolide-loaded liposomes decorated with anticarbonic anhydrase IX antibody for lung cancer therapy. Scientific reports, 7, 1-12.
- 124. Petrilli, R., et al., 2017. Cetuximab immunoliposomes enhance delivery of 5-FU to skin squamous carcinoma cells. Anti-Cancer Agents in Med.Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 17, 301-308.
- 125. Eloy, J.O., et alk., 2017. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European journal of pharmaceutics and biopharmaceutics, 115, 159-167.
- 126. Saeed, M., et al., 2016. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody. International journal of nanomedicine, 11, 955.
- 127. Shin, D.H., et al., 2016. Herceptin-conjugated temperature-sensitive immunoliposomes encapsulating gemcitabine for breast cancer. Archives of pharmacal research, 39, 350-358.
- 128. Li, W., et al., 2016. Evaluation of therapeutic effectiveness of 131I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer. World Journal of Gastroenterology, 22, 3758.
- 129. Shi, C., et al., 2015. Novel drug delivery liposomes targeted with a fully human anti-VEGF165 monoclonal antibody show superior antitumor efficacy in vivo. Biomedicine & Pharmacotherapy, 73, 48-57.
- Meissner, J.M., et al., 2015. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. Journal of controlled release, 220, 515-528.
- 131. Lozano, N., et al., 2015. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. International journal of pharmaceutics, 482, 2-10.
- 132.. Xin, L., Cao, et al., 2015. Evaluation of rMETase-loaded stealth PLGA/liposomes modified with anti-CAGE scFV for treatment of gastric carcinoma. Journal of biomedical nanotechnology, 11, 1153-1161.
- 133. Limasale, Y.D.P., et al., 2015. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells. International journal of pharmaceutics, 479, 373-364.

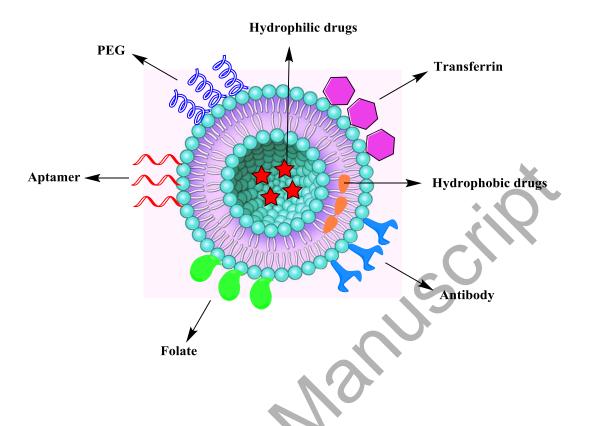
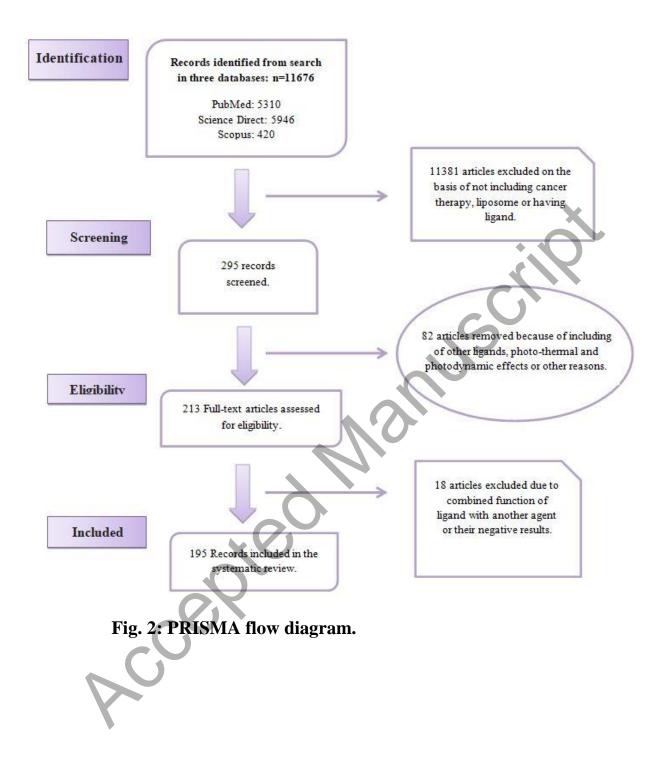



Fig. 1: Targeting of liposome with various ligands

Accei

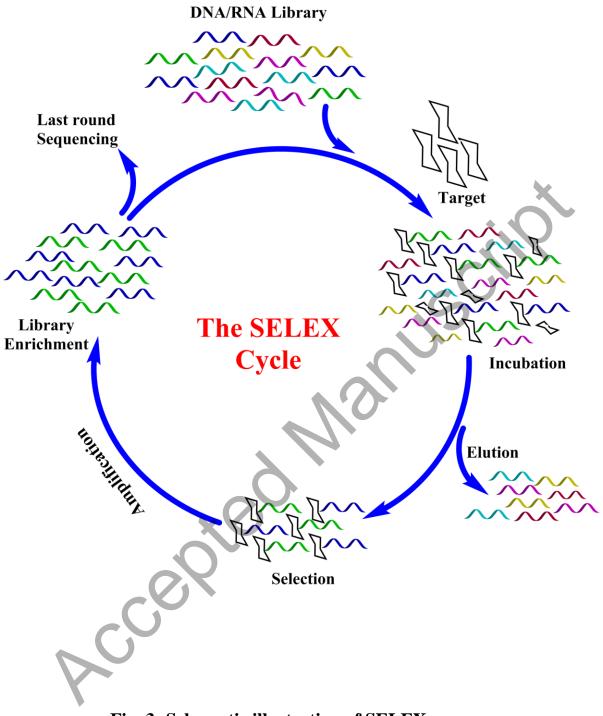
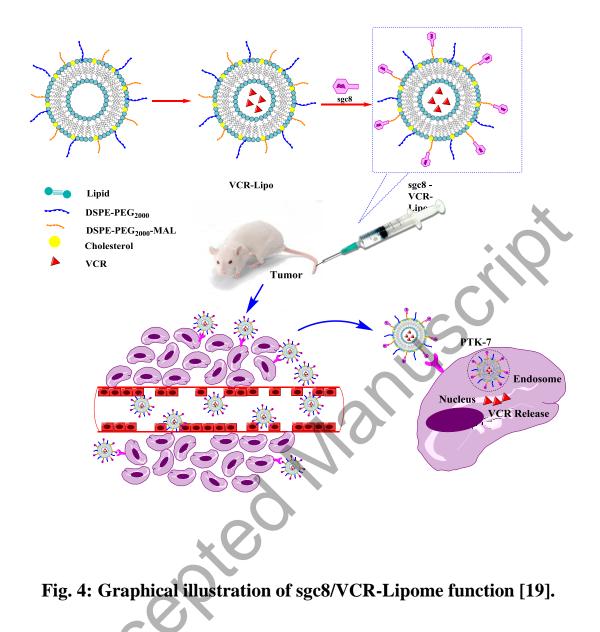



Fig. 3: Schematic illustration of SELEX process

×C'

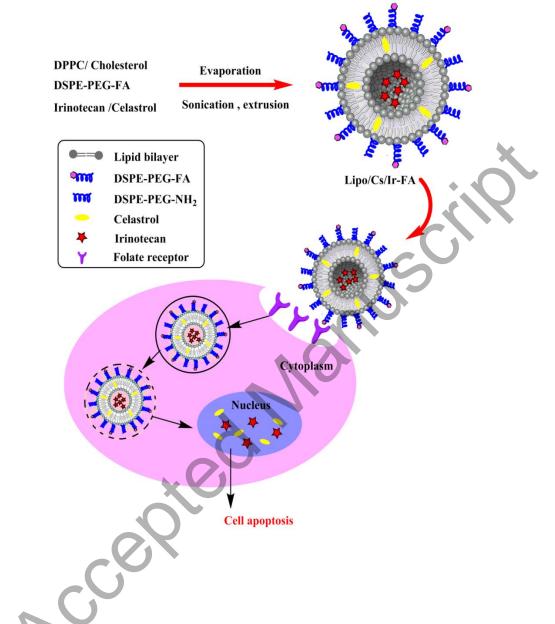


Fig. 5: Schematic illustration of the folate functionalized liposomes for breast cancer therapy [57].

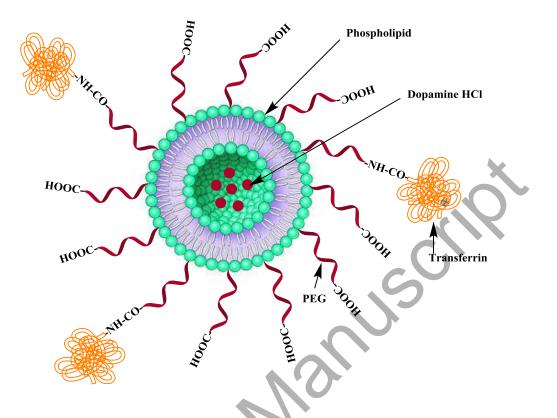


Fig. 6: Graphical representation of the hydrophilic drug dopaminehydrochloride into the Tf functionalized liposomes [76].

Accer

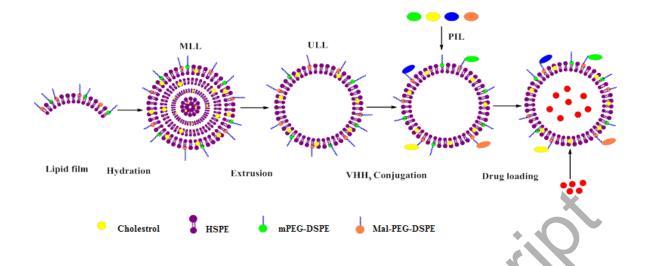


Fig. 7: Schematic representation of the preparation of heavy chain antibodies targeted liposomes [97].

Accepte

Table S1. S therapy	ummary o	of research	1 articles ir	n liposomes f	unctionalized w	vith folic a	cid for active targeted cance	er
Liposome type	Size(nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	130	FA	FA receptor	Oligonucleot ide	B16F10	In vitro	Higher cellular uptake	[1]
PEGylated	143.5	FA	FA receptor	Imatinib	HeLa and A549	In vitro	Promising strategy in cervical cancer therapy	[2]
PEGylated	129.8	FA	FA receptor	DOX / Bmi1 siRNA	HeLa, KB, Hep3B, A549, Huh7, MCF-7 and LO2	In vitro and in vivo	Higher accumulation in tumor cells	[3]
PEGylated	137.0±0. 9	FA	FA receptor	DOX	HeLa and KB	In vivo	Selectively take up of the liposomes	[4]
PEGylated	160.1	FA	FA receptor	Ursolic acid	KB	In vitro and in vivo	More toxicity and apoptosis	[5]
PEGylated	197.8±4. 58	FA	FA receptor	Irinotecan	S180	In vivo	More drug distribution, superior anticancer activity and lower toxicity	[6]
PEGylated	100-110	FA	FA receptor	Carboplatin	CB-17	In vitro and in vivo	Significant improvement in therapeutic efficacy of the drug	[7]
PEGylated	100–120	FA	FA receptor	DOX	КВ	In vitro and in vivo	Enhancement in the delivery of anticancer drugs	[8]
PEGylated	76.0 ±35.5	FA /CHEMS	FA receptor	Daunorubici n	L1210JF and KB	In vitro and in vivo	Increased drug release in the tumor	[9]
Cationic/ma gnetic	174 ± 53	FA	FA receptor	DOX	HeLa and ZR- 75-1	In vitro	Surface binding in cells with high folate receptor expression	[10]
PEGylated	110-130	FA /polymer	FA receptor	Docetaxel	MCF-7 andA- 549	In vitro and in vivo	Greater accumulation of the drug in tumor tissue	[11]
PEGylated	110 ± 10	FA	FA receptor	Ricin	KB	In vitro	Enhancement in cytotoxicity	[12]
Cationic	~150	FA	FA receptor	Ct DNA/DOX	KB, L1210JF and RAW264.7	In vitro and in vivo	Selective uptake, tumor growth inhibition and increased cytotoxicity	[13]
PEGylated	120	FA	FA receptor	DOX / ATRA	MV4-11 AML and KB	In vitro	Higher cytotoxicity than non- targeted liposomes	[14]
Thermosensi tive- magnetic	361±20	FA	FA receptor	DOX	KB and HeLa	In vitro	Enhanced uptake into tumor cells and increased cytotoxicity	[15]
PEGylated	-	FA	FA receptor	DOX	KB, KB-V and J6456	In vitro and in vivo	Therapeutic improvement	[16]
Cationic	163.5	FA	FA receptor	Calcein	MCF-7	In vitro	Significant higher uptake	[17]
PEGylated	100–110	FA	FA receptor	Zoledronic acid	Fibroblasts, J774, M109 and	In vitro	More efficient intracellular delivery of the drug	[18]

					M109R			
PEGylated	115 ± 20	FA	FA receptor	Arsenic trioxide	KB,HeL and MCF-7	In vitro	Improvement in the drugefficacy	[19]
PEGylated	110 - 120	FA	FA receptor	Docetaxel	KB	In vitro	Enhancement in tumor cell uptake and antitumor efficacy	[20]
PEGylated	130	FA	FA receptor	Mitoxantron e	KB and A549	In vitro	High levels of cytotoxic activity	[21]
PEGylated	120±20	FA /CHEMS	FA receptor	DOX	KB and HeLa	In vitro	Taken upselectively by cancer cells and greater cytotoxicity	[22]
							X	

Table S1. Co	ontinued							
Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	~100	FA	FA receptor	DOX	KB and A549	In vitro and in vivo	Significantly higher antitumor effect	[23]
PEGylated	110 - 130	FA	FA receptor	DOX	MV4-11	In vitro and in vivo	High efficiency of cellular uptake and cytotoxicity	[24]
PEGylated	124 - 163	FA	FA receptor	5-FU	B16F10	In vitro and in vivo	Enhanced drug uptake by tumor cells	[25]
PEGylated	100	FA	FA receptor	DOX	L1210JF	In vivo	Better anticancer effectiveness	[26]
PEGylated	70 - 90	FA	FA receptor	0	J6456	In vitroand in vivo	Increased drug levels in tumor cells	[27]
Cationic	80 - 90	FA	FA receptor	Oligodeoxy- ribonucleoti de	KB	In vitro	Enhancement in drug uptake by cells	[28]
PEGylated	97.1	FA	FA receptor	РТХ	KB	In vitro	Enhanced cytotoxicity	[29]
PEGylated	100	FA	FA receptor	Daunorubici n	L1210JF	In vivo	Significant increase in drug uptake by cells and tumor inhibition	[30]
PEGylated	65 - 90	FA	FA receptor	Calcein	IGROV	In vivo	Enhanced uptake into cells	[31]
PEGylated	70 - 90	FA	FA receptor	DOX	J6456	In vivo	Alternation in liposome bio- distribution	[32]
PEGylated	90 - 110	FA	FA receptor	Oligonucleot ide	KB	In vitro and in vivo	Increase in drug delivery	[33]
PEGylated	130	FA	FA receptor	DOX	KB and C6	In vitro	Increase in drug uptake	[34]
PEGylated	~100	FA	FA receptor	DOX	KB	In vitro and in vivo	Increase in tumor growth inhibition	[35]
Cationic	100–200	FA	FA receptor	DNA	M109	In vitro and	Increased tumor-association of drug	[36]

						in vivo		
PEGylated	~200	FA	FA receptor	Boron	KB	In vitro	Enhanced uptake and subcellular distribution	[37]
Cationic/pH- sensitive	-	FA	FA receptor	AraC / Calcein	KB	In vitro	Facilitated endocytosis into cells and enhanced cytotoxicity	[38]
PEGylated	70–100	FA	FA receptor	DOX	M109	In vitro and in vivo	Rapid internalization of drug into cells and higher cytotoxicity	[39]
PEGylated	130	FA	FA receptor	DOX	KB, HeLa, WI38 and fibroblast	In vitro	Enhancement in cytotoxicity and specificity	[40]
PEGylated	_	FA	EGF receptor	Oligodeoxy- ribonucleoti d	KB	In vitro	Efficient and tumor specific delivery	[41]
				je ^o	No			

Table S2. Sucancer thera	-	research	articles in	liposomes fu	nctionalized wi	th transfe	rrin for active targeted	
Liposome type	Size (nm)	Ligand	Receptor/ Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
PEGylated	124.1 ± 6.5	TF	TF receptor	Docetaxel	A2780	In vitro and in vivo	Enhanced targeting ability, decreased side effects and improved anti-tumor efficacy	[42]
PEGylated	189.5 ± 69.9	TF	TF receptor	Zoledronic acid	MDA-MB-231	In vitro	Enhancement in the anti-cancer effect	[43]
PEGylated	294	TF	TF receptor	Cisplatin	C6	In vitro	Higher transport efficiency to cells	[44
PEGylated	< 200	TF	TF receptor	DOX	ATCC HTB- 177	In vitro and in vivo	Improving the aerosol treatment	[45
PEGylated	$\begin{array}{c} 115\pm20\\ 107\pm14 \end{array}$	TF	TF receptor	Ceramides	HeLa, A2780 and HUVEC	In vitro and in vivo	Strong antitumor and pro- apoptotic effect	[46
PEGylated	118.3 ± 12.7	TF	TF receptor	DOX	KB	In vitro	Enhanced in vitro cytotoxicity	[47
PEGylated	175.5 ± 7.28	TF	TF receptor	siRNA	K562, LAMA- 84 and BJ	In vitro	Combining molecular and cellular targeting	[48
PEGylated	75.6±3.2	TF	TF receptor	Docetaxel	K562and KB	In vitro	Efficient uptake and greater cytotoxicity	[49
PEGylated	70 ± 19	TF	TF receptor	DOX	HepG2	In vitro and in vivo	Significant increase of drug in tumor cells	[50
PEGylated	< 100	TF	TF receptor	Sodium borocaptate	U87Δ	In vitro and in vivo	Selective and high concentration drug delivery	[51
PEGylated	180	TF	TF receptor	Oxaliplatin	Colon 26	In vitro and in vivo	Enhanced extravasation of liposomes into tumors	[52
PEGylated	110	TF	TF receptor	DOX / Verapamil	K562	In vitro	Effective in overcoming drug resistance in cells	[53
PEGylated	135.80 ± 2.76	TF	TF receptor	DOX	A549, 16HBE14o and Calu-3	In vitro	Increased levels of cytotoxicity	[54
PEGylated	146	TF	TF receptor	AlPcS4	AY-27	In vitro and in vivo	Selective delivery of photosensitizers to tumor cells	[55
PEGylated	122.8 ± 31	TF	TF receptor	BSH	Colon 26	In vitro and in vivo	Enhanced accumulation of ¹⁰ B into the cells	[56
PEGylated	180-220	TF	TF receptor	Endostatin	HUVEC	In vitro and in vivo	Inhibition of angiogenesis and promotion of apoptosis	[57
Cationic	584.2 ± 8.8	TF	TF receptor	DDAB	HeLa	In vitro	Efficient DNA delivery into the cells	[58
PEGylated	146	TF	TF receptor	AlPcS4	HeLa	In vitro and in vivo	Selective uptake and high intracellular concentration	[59
PEGylated	180–200	TF	TF	Cisplatin	MKN45P	In vitro	Significant high uptake and	[60

	· · · · · · · · · · · · · · · · · · ·		receptor				increase in drug level in cells	
PEGylated	100–140	TF	TF receptor	-	Colon 26	In vivo	Specific receptor-mediated endocytosis to target cells	[61]
PEGylated	122	TF	TF receptor	DOX	C6	In vitro	Significantly increased drug uptake	[62]

							×	
Table S3: So targeted car	-		articles in	ı liposomes f	unctionalized w	vith monoo	clonal antibodies for active	
Liposome type	Size (nm)	Ligand	Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
Immunolipos omes	405.1±2. 74	Anti- ITGB6	ITGB6	5- Fluorouracil	SW480 and HT- 29	In vitro and in vivo	Higher drug induction of cellular apoptosis rate and reduction in IC ₅₀	[63]
Temperature- sensitive	130.1 ± 1.3 128.2 ± 1.6	Anti- MUC-1	hCTMO1	DOX	MDA-MB-435, MCF-7 and C33a	In vitro and in vivo	Increased accumulation of targeted liposomes in the tumor	[64]
Immunolipos omes	About 100	2C5	nucleosom e	DOX	SKOV-3	In vitro and in vivo	A significant reduction in tumor growth and enhanced therapeutic efficacy of drug	[65]
Immunolipos omes	107 ± 2	Anti- PSMA	PSMA	²²⁵ Ac	LnCaP, Mat-Lu, HUVEC, BT474 and MDA-MB-231	In vitro	Selective binding, internalization, and killing PSMA-expressing cells	[66]
Cationic	185.7	Anti- CAGE	CAGE	rMETase	SGC-7901	In vitro	Significant cellular accumulation in the cytoplasm	[67]
Immunolipos omes	~100	anti- HER2	Anti- HER2	Curcuminan d Resveratrol	MCF7 and JIMT1	In vitro	Increase of therapeutic effect and enhancement of cytotoxic effects	[68]
Immunolipos omes	87.4 ± 2.6	Anti- CD30	CD30	DOX	KARPAS 299 and SUP-M2	In vitro and In vivo	Significant inhibition in tumor growth, higher binding affinity to cells and lower IC_{50}	[69]
Immunolipos omes	$\begin{array}{c} 107\pm25\\ 114\pm33 \end{array}$	Trastuzu mab	Her-2+	Bleomycin	BT-474, SKBR- 3, MCF-7, Her18, HCC- 1954 and MDA- 453	In vitro	Decreased tumor cell growth, cell viability, and side effects	[70]
Multifunction al immunolipos ome	~ 180	Anti- Mesothel in	Mesothelin	DOX / USPIOs	Panc-1	In vitro and in vivo	Selective accumulation and higher inhibitory effect on tumor growth	[71]
Immunolipos omes	-	anti-c- Met	c-Met scFvs	DOX	H1993, H520, H460, H441,A549, and	In vitro and	Selective and increased accumulation of the drug, and enhancement in its antitumor	[72]

		scFvs			293T	in vivo	activity	
Immunolipos omes	-	Milatuzu mab	anti-CD74	-	B cells	In vitro	Promoting accumulation of CD74 on the surface of B cells and more cytotoxicity	[73]
Immunolipos omes	194.47 ± 3.20	Anti- HER2	HER2	PE38KDEL	SK-BR3, MDA- MB-231and MCF-7	In vitro	Specific binding and internalization into cells, and more cytotoxic effect	[74]
	1.00	Anti-	CD22		HL60, KG-1	x	The highest cytotoxicity against	(77)
pH-sensitive	160	CD33	CD33	Ara-C	and THP-1	In vitro	cells	[75]
Immunolipos omes	100	2C5	Nuclesome	Doxil	4T1, C26 and PC3	In vivo	Enhanced accumulation in tumors	[76]
Immunolipos		Anti-		Magnetite	BT474 and			
omes	-	HER2	HER2	NPs	SKOV3	In vivo	Accumulation in tumor cells	[77]
Immunolipos		Anti-			CHO, WiDr and		Efficiently localized in the	
omes	90-110	TAG-72	TAG-72	pDNA	LS174 T	In vivo	tumor tissues	[78]
Immunolipos omes	~ 200	Anti- HER2	HER2	PTX	BT-474 and SK- BR-3	In vitro	Higher cellular uptake	[79]
Immunolipos omes	87.0±10. 87	2C5	Nucleosom e	DOX	U-87 MG	In vitro and in vivo	Significantly higher accumulation in tumor	[80]
Immunolipos omes	90 - 120	2C5	Nucleosom e	DOX	LLC, 4T1, C26, BT-20, MCF-7 and PC3	In vitro	Specific internalization of drug into cytosol	[81]
					0			1

Table S3. C	ontinued							
Liposome type	Size (nm)	Ligand	Antigene	Drug/agent	Application or Cell line	Study type	Outcome	Ref
Immunolipos omes	100 to 120	Anti- CD166	CD166	Topotecan, DOX and Mitoxantron e	PC3, Du-145 and LNCaP	In vitro	Improved cytotoxic activity andefficient intracellular delivery of drug,	[82]
Immunolipos omes	<200	Hercepti n	HER2	РТХ	BT-474 and SK- BR-3	In vitro and in vivo	Increased cellular uptake, tumor tissue distribution and superior antitumor efficacy	[83]
Immunolipos omes	90 - 110	Anti- HER2	HER2	ADS645WS and gold	BT-474 and MCF-7	In vivo	Intracellular drug delivery and accumulation within cancer cells	[84]
Immunolipos omes	_	IgM	PSMA	Suicide gene	LNCaP, PC-3, DU145 and T24	In vitro	Selective delivery of gene to the cancer cells	[85]
Immunolipos omes	110±15	2C5	Nucleosom e	DOX	LLC and BT-20	In vitro	Specific binding to various tumor cells	[86]
Immunolipos omes	$100 \pm 10 \\ 120 \pm 10$	Anti- CD19 / anti- CD20	CD19 and CD20	DOX / vincristine	CB17 and FMC63	In vitro and in vivo	Improved therapeutic outcome	[87]
Immunolipos omes	-	Anti- GD2	GD2	CpG-myb	14.G2a	In vitro and in vivo	Improved antitumor effect	[88]
Immunolipos	100-200	GAH	Cell	DOX	MKN1, MKN45,	In vitro and	Bounding to the surface of cancer cells and internalization	[89]

1				1				
omes			surface		MKN74,	in vivo	by the cells	
					HSC-3, C-1,			
					HT-29, LoVo,			
Immunolipos			Cell		WiDr-Tc and	In vitro	Significantly superior antitumor	
-	142	GAH		DOX		and	effects against GAH-positive	[00]
omes	143	GAH	surface	DOX	SW837	in vivo	cancer cells	[90]
		A					Effective in treating early	
I		Anti-			GZHI and 4T1-	In vitro	lesions in both the pseudo-	
Immunolipos	00 100	MUC-1	MUC 1	DOV		and	metastatic and metastatic	[01]
omes	90 - 120		MUC-1	DOX	MUC1	in vivo	models	[91]
Immunolinos					K562 and		Accumulation and	
Immunolipos		Anti-TF	TF	DOX	K562/ADM		internalization of the drug in in	[02]
omes	-		IF	DOX	KJ02/ADIVI	In vitro	drug-resistant cells	[92]
Immunolines		OV TI 2				In vitro	superior target cell binding and	
Immunolipos	~ 250	OV-TL3	OA3	DOX	NIH:OVCAR-3	and	cell growth inhibition of the	[02]
omes	~ 250		UAS	DOX	MINICOVCAR-3	in vivo	drug	[93]
Immunolinos		DAI	Cell	Methotrexat	Caki-1 and	In vitro		
Immunolipos	52 . 20	DAL	surface			and	More tymes inhibition	[04]
omes	52 ± 20	K29	antigene	e	ATCC TIB9	in vivo	More tumor inhibition	[94]
		•		•	•			•

1. Kang, J.H., BattogtokhKo, G., and Y.T., 2014. Folate-targeted liposome encapsulating chitosan/oligonucleotide polyplexes for tumor targeting. AAPS PharmSciTech, 15, 1087-1092.

- 2. Ye, P., et al., 2014. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. International journal of nanomedicine, 9, 2167.
- 3. Yang,T., et al., 2014. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics, 4, 1096.
- 4. Huang, Y., et al., 2014. A novel hydrolysis-resistant lipophilic folate derivative enables stable delivery of targeted liposomes in vivo International journal of nanomedicine, 9, 4581.
- 5. Yang, G., et al., 2014. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. Journal of agricultural and food chemistry, 62, 2207-2215.
- 6. Zhang, Z., and Yao, J., 2012. Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech, 13, 802-810.
- 7. Chaudhury, A., et al., 2012. Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft. International journal of nanomedicine, 7, 739.
- 8. Riviere, K., et al., 2011. Antitumor effect of folate-targeted liposomal doxorubicin in KB tumorbearing mice after intravenous administration. Journal of drug targeting, 19, 14-24.
- 9. Xiong, S., et al., 2011. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed. Pharmacotherapy, 65, 2-8.
- 10. Bothun, G.D., et al., 2011. Multicomponent folate-targeted magnetoliposomes: design, characterization, and cellular uptake. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 797-805.
- 11. Li, X., et al., 2011. In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer-modified liposomes loaded with docetaxel. International journal of nanomedicine, 6, 1167.
- 12. Tyagi, N., and Ghosh, P.C., 2011. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of

monensin intercalated into folate-tagged liposomes. . European journal of pharmaceutical sciences, 43, 343-353.

- 13. Li, H., et al., 2011. Delivery of calf thymus DNA to tumor by folate receptor targeted cationic liposomes. Biomaterials, 32, 6614-6620.
- 14. Li, H., et al., 2010. Targeting human clonogenic acute myelogenous leukemia cells via folate conjugated liposomes combined with receptor modulation by all-trans retinoic acid. International journal of pharmaceutics, 402, 57-63.
- 15. Pradhan, P., et al., 2010. Targeted temperature sensitive magnetic liposomes for thermochemotherapy. Journal of controlled release, 142, 108-121.
- 16. Gabizon, A., et al., 2010. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer chemotherapy and pharmacology, 66, 43-52.
- 17. Wang, H., et al., 2010. Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials, 31, 4129-4138.
- Shmeeda, H., et al., 2010. Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. Journal of controlled release 146, 76-83.
- 19. Chen, H., et al., 2009. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Molecular cancer therapeutics, 8, 1955-1963.
- 20. Guangxi, Z., et al., 2009. Preparation, characterization and pharmacokinetics of folate receptortargeted liposomes for docetaxel delivery. Journal of nanoscience and nanotechnology, 9, 2155-2161.
- 21. Kawano, K., et al., 2009. Higher liposomal membrane fluidity enhances the in vitro antitumor activity of folate-targeted liposomal mitoxantrone. Molecular pharmaceutics, 6, 98-104.
- 22. Xiang, G., et al., 2008. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. International journal of pharmaceutics, 356, 29-36.
- 23. Yamada, A., et al., 2008. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clinical cancer research, 14, 8161-8168.
- 24. Lu, Y., et al., 2007. Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells. Molecular pharmaceutics, 4, 707-712.
- 25. Gupta, Y., et al., 2007. Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. Journal of drug targeting, 15, 231-240.
- 26. Pan, X.Q., Jones, S., and Cox, K., 2006. The way that PEGyl-DSPC liposomal doxorubicin particles penetrate into solid tumor tissue Drug target insights, 1, 117739280600100002.
- 27. Shmeeda, H., et al., 2006. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Molecular cancer therapeutics, 5, 818-824.
- 28. CHIU, S.J., Marcucci, G., and Lee, R.J., 2006. Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes. Anticancer research, 26, 1049-1056.
- 29. Wu, J., Liu, Q., and Lee, R.J., 2006. A folate receptor-targeted liposomal formulation for paclitaxel. International journal of pharmaceutics, 316, 148-153.
- 30. Pan, X.Q., and Lee, R.J., 2005. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer research, 25, 343-346.
- 31. Turk, M.J., Waters, D.J., and Low, P.S., 2004. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer letters, 213, 165-172.
- 32. Gabizon, A., et al., 2003. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumorbearing mice. Clinical cancer Research 9, 6551-6559.
- 33. Leamon, C.P., Cooper, S.R., and Hardee, G.E., 2003. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjugate chemistry, 14, 738-747.

- 34. Saul, J.M., et al., 2003. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. Journal of Controlled Release, 92, 49-67.
- 35. Pan, X.Q., Wang, H., and Lee, R.J., 2003. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharmaceutical research, 20, 417-422.
- 36. Reddy, J.A., et al., 2002. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene therapy, 9, 1542-1550.
- 37. Sudimack, J.J., et al., 2002. Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy. Pharmaceutical research, 19, 1502-1508.
- 38. Shi, G., et al., 2002. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. Journal of controlled release, 80, 309-319.
- 39. Goren, D., et al., 2000. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clinical cancer research, *6*, 1949-1957.
- 40. Lee, R.J., and Low, P.S., 1995. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1233, 134-144.
- 41. Wang, S., et al., 1995. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proceedings of the National Academy of Sciences, 92, 3318-3322.
- 42. Yuan, M.Q., et al., 2014. The anti-tumoral efficacy of a docetaxel-loaded liposomal drug delivery system modified with transferrin for ovarian cancer. Drug Research, 64, 195-202.
- 43. Choi, M., Shin, D.H., and Kim, J.S., 2013. Repositioning of zoledronic acid for breast cancer using transferrin-conjugated liposome. Journal of Pharmaceutical Investigation, 43, 461-469.
- 44. Lv, Q., et al., 2013. Characteristics of sequential targeting of brain glioma for transferrinmodified cisplatin liposome. International journal of pharmaceutics, 444, 1-9.
- 45. Gaspar, M.M., et al., 2012. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats Journal of aerosol medicine and pulmonary drug delivery, 25, 310-318.
- 46. Koshkaryev, A., Piroyan, A., and Torchilin, V.P., 2012. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer biology & therapy, 13, 50-60.
- 47. Xu, S., et al., 2011. Synthesis of transferrin (Tf) conjugated liposomes via Staudinger ligation. International journal of pharmaceutics, 404, 205-210.
- 48. Mendonça, L.S., et al., 2010. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjugate chemistry, 21, 157-168.
- 49. Guangxi, Z., et al., 2010. A transferrin receptor-targeted liposomal formulation for docetaxel. Journal of nanoscience and nanotechnology, 10, 5129-5136.
- 50. Li, X.M., et al., 2009. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. International journal of pharmaceutics, 373, 116-123.
- 51. Doi, A., et al., 2008. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. Journal of Neuro-oncology, 87, 287-294.
- 52. Suzuki, R., et al., 2008. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin– PEG-liposome. International journal of pharmaceutics, 346, 143-150.
- 53. Wu, J., et al., 2007. Reversal of multidrug resistance by transferrin-conjugated liposomes coencapsulating doxorubicin and verapamil. J. Pharm. Pharm. Sci. 10, 350-357.
- 54. Anabousi, S., et al., 2006. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. European journal of pharmaceutical sciences, 29, 367-374.

- 55. Derycke, A.S.L., et al., 2004. Transferrin-Conjugated Liposome Targeting of Photosensitizer AlPcS 4 to Rat Bladder Carcinoma Cells. Journal of the National Cancer Institute, 96, 1620-1630.
- 56. Maruyama, K., et al., 2004. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). Journal of controlled release, 98, 195-207.
- 57. Li, X., et al., 2003. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposome-endostatin complex World Journal of Gastroenterology: WJG, 9, 262.
- 58. Joo, S.Y., and Kim, J.S., 2002. Enhancement of gene transfer to cervical cancer cells using transferrin-conjugated liposome. Drug development and industrial pharmacy, 28, 1023-1031.
- 59. Gijsens, A., et al., 2002. Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. International journal of cancer, 101, 78-85.
- 60. Iinuma, H., et al., 2002. Intracellular targeting therapy of cisplatin-encapsulated transferrinpolyethylene glycol liposome on peritoneal dissemination of gastric cancer International journal of cancer, 99, 130-137.
- 61. Ishida, O., et al., 2001. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharmaceutical research, 18, 1042-1048.
- 62. Eavarone, D.A., Yu, X., and Bellamkonda, R.V., 2000. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J. Biomed. Mat. Rese. An Official J. The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 51, 10-14.
- 63. Liang, B., et al., 2015. Integrinβ6-targeted immunoliposomes mediate tumor-specific drug delivery and enhance therapeutic efficacy in colon carcinoma. Clinical Cancer Rese. 21, 1183-1195.
- 64. Al-Ahmady, Z.S., Chaloin, O., and Kostarelos, K., 2014. Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. Journal of controlled release, 196, 332-343.
- 65. Apte, A., et al., 2014. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer biology & therapy, 15, 69-80.
- 66. Bandekar, A., et al., 2014. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α -particle therapy of cancer. Journal of nuclear medicine, 55, 107-114.
- 67. Lin, X., et al., 2013. Stealth cationic liposomes modified with anti-CAGE single-chain fragment variable deliver recombinant methioninase for gastric carcinoma therapy. Journal of nanoscience and nanotechnology, 13, 178-183.
- 68. Catania, A., et al., 2013. Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast cancer research and treatment, 141, 55-65.
- 69. Molavi, O., et al., 2013. Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials, 34, 8718-8725.
- 70. Kullberg, M., Mann, K., and Anchordoquy, T.J., 2012. Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. Molecular pharmaceutics, 9, 2000-2008.
- 71. Deng, L., et al., 2012. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. International journal of nanomedicine, 7, 5053.
- 72. Lu, R.M., et al., 2011. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 32, 3265-3274.

- 73. Hertlein, E., et al., 2010. Milatuzumab immunoliposomes induce cell death in CLL by promoting accumulation of CD74 on the surface of B cells. Blood, The Journal of the American Society of Hematology, 116, 2554-2558.
- 74. Gao, J., et al., 2009. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. International journal of pharmaceutics, 374, 145-152.
- 75. Simard, P., and Leroux, J.C., 2009. pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells. International journal of pharmaceutics, 381, 86-96.
- 76. ElBayoumi, T.A., and Torchilin, V.P., 2009. Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clinical cancer research, 15, 1973-1980.
- 77. Kikumori, T., et al., 2009. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Research and Treatment, 113, 435.
- 78. Kim, K.S., et al., 2008. Targeted gene therapy of LS174 T human colon carcinoma by anti-TAG-72 immunoliposomes. Cancer Gene Therapy, 15, 331-340.
- 79. Yang, T., et al., 2007.Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. Journal of controlled release, 120, 169-177.
- 80. Gupta, B., and Torchilin, V.P., 2007. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer immunology, immunotherapy, 56, 1215-1223.
- 81. Elbayoumi, T.A., and Torchilin, V.P., 2007. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. European journal of pharmaceutical sciences, *32*, 159-168.
- 82. Roth, A., et al., 2007. Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Molecular Cancer Therapeutics, 6, 2737-2746.
- 83. Yang, T., et al., 2007. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharmaceutical research, 24, 2402-2411.
- 84. Kirpotin, D.B., et al., 2006. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research, 66, 6732-6740.
- 85. Ikegami, S., et al., 2005. Selective gene therapy for prostate cancer cells using liposomes conjugated with IgM type monoclonal antibody against prostate-specific membrane antigen. Human cell, 18, 17-23.
- 86. Lukyanov, A.N., et al., 2004. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. Journal of controlled release, 100, 135-144.
- 87. Sapra, P., and Allen, T.M., 2004. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clinical cancer research, 10, 2530-2537.
- 88. Brignole, C., et al., 2004. Immune cell-mediated antitumor activities of GD2-targeted liposomal c-myb antisense oligonucleotides containing CpG motifs. Journal of the National Cancer Institute, 96, 1171-1180.
- 89. Hosokawa, S., et al., 2004. Establishment and evaluation of cancer-specific human monoclonal antibody GAH for targeting chemotherapy using immunoliposomes. Hybridoma and hybridomics, 23, 109-120.
- 90. Hamaguchi, T., et al., 2004. Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sciences, 95, 608-613.
- 91. Moase, E.H., et al., 2001. Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1510, 43-55.

- 92. Suzuki, S., et al., 1997. Modulation of doxorubicin resistance in a doxorubicin-resistant human leukaemia cell by an immunoliposome targeting transferring receptor. British journal of cancer, 76, 83-89.
- 93. Vingerhoeds, M.H., et al., 1996. Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. British journal of cancer, 74, 1023-1029.
- 94. Singh, M., et al., 1991. Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer letters, 56, 97-102.

Accepted Manuscipt